
Educational
Designer

J o u r n a l o f t h e I n t e r n at i o n a l S o c i e t y f o r D e s i g n a n d
D e v e l o p m e n t i n E d u c at i o n

Abstract

Introduction

Designing an Adaptive Assessment
for Preschool Children’s Robotics

Knowledge
Amanda Strawhacker, Emily Relkin,

Marina Umaschi Bers

Although Computer Science (CS) is gaining popularity in early education settings in the
US and worldwide, there is a lack of agreement about how to assess learning in young
children, particularly preschoolers. The current study presents the design and pilot of a
developmentally appropriate assessment tool, the Coding Stages Assessment-KIBO (CSA-
KIBO), to evaluate preschool children’s coding skills with a robot kit (KIBO) designed for
young children. Using a design-based research framework we developed evidence-based
design criteria to inform our iteratively-tested assessment tool. In this paper, we address
the following research question: How does the mode of administration of the CSA-KIBO
robotics assessment impact performance among preschool students? We administered
CSA-KIBO to 151 coding naive preschool students ages 3-5 years, from ethnically,
socioeconomically, and linguistically diverse backgrounds. Results showed that shorter
administration formats were more suitable for our preschool sample and yielded similar
assessment results to the lengthier format. Across all formats of administration, a
possible floor effect was present in our coding-inexperienced sample. We consider the
major contribution from this study to be a focused exploration of assessment
administration as a critical aspect of assessment design for preschool-aged learners.

Computer science is gaining popularity in education settings in the US and worldwide.
There is increasing interest in research, policy mandates, pedagogical approaches, learning
standards, and commercial products to explore and support introducing computational
skills as early as pre-kindergarten (Code.org, CSTA & ECEP Alliance, 2021; International
Society for Technology in Education, 2007; NAEYC & Fred Rogers Center for Early
Learning and Children’s Media, 2012; Royal Society, 2017; U.S. Department of Education
& U.S. Department of Health and Human Services, 2016; Vegas & Fowler, 2020). All 50
US states have voiced some level of support for integrating computer science into school
curricula, with 23 currently adopting or implementing a policy to provide access at the
high school level. Of these, 11 are further offering access at all K-12 levels (Code.org, CSTA
& ECEP Alliance, 2021). Internationally, 219 countries have been identified as having CS
frameworks in place in formal K-12 education settings (Vegas & Fowler, 2020). However,
less work has focused on coding interventions in Pre-Kindergarten (PreK).

Page 1

Strawhacker, A., Relkin, E., Bers, M.U. (2022) Educational Designer, 4(15)

Retrieved from: http://www.educationaldesigner.org/ed/volume4/issue15/article60/

Research has shown that educational investment beginning in early childhood can have
lasting gains, and that computer science interventions in PreK can improve children’s
confidence and positive attitudes toward learning with robotics and technology (Bers,
2020; Kazakoff & Bers, 2014; Zviel-Girshin, Luria & Shaham, 2020). Further, these
experiences may have benefits beyond computer science content areas, supporting the
development of foundational skills such as numeracy, literacy, problem solving, and
sequencing (Bers, 2020; Kazakoff & Bers, 2014; Liao & Bright, 1991; Zviel-Girshin, Luria &
Shaham, 2020). Computer-based play has even been suggested to support non-academic
skills such as executive functioning (a broad skill set including mental flexibility, inhibitory
control, and working memory), communication, and socio-emotional development
(Clements & Sarama, 2004; Myers, 2021; Bers 2020).

Among educational computer tools, programmable robotic kits have emerged as an
effective way to engage Preschool-aged learners in tangible computational experiences.
Screen-free technologies such as the KIBO robotics kit (www.kinderlabrobotics.com), the
BeeBot robot (www.terrapinlogo.com), and the Code-a-Pillar robot (www.fisher-
price.com) engage children as young as 3 years old in tangible play with engineering
construction and computer programming (also called coding). Young children become
engineers by playing with motors and sensors as well as storytellers by creating and
sharing personally meaningful projects that react in response to their environment (Bers,
2020). Thus, the use of robotic systems in early childhood starting in PreK can expand the
range of computer science concepts and skills and include topics related to hardware and
software, inputs and outputs. Because they facilitate cognitive as well as fine motor and
social development, educational robotics kits are developmentally appropriate for early
childhood education (Bers, 2020; Clements & Sarama, 2004; Svensson, 2000). Early
intervention is even more critical for girls and children from minority backgrounds
underrepresented in STEM, who have fewer opportunities to develop positive attitudes
toward CS and STEM (Code.org, CSTA & ECEP Alliance, 2021). Research shows that early
exposure to STEM curricula and computer programming may mitigate gender-based
stereotypes regarding STEM careers, increase interest in engineering, and lower obstacles
to entering these fields later in life for girls and minoritized children (Metz, 2007; Sullivan
& Bers, 2018).

Despite the widespread popularity of coding, robotic, and computational tools, and the
growing body of research supporting the educational and psychosocial benefits of these
domains, there is currently a lack of consensus about the best approach to assessment of
computational learning (So, Jong & Liu, 2020), especially for preschool-aged learners
(Hsu, Chang & Hung, 2018). In order to design effective coding initiatives, we need to be
able to assess children’s learning about coding, and their understanding and abilities at
baseline, prior to learning interventions (Webb et al., 2017). A growing number of
organizations are working to address this gap through standardized computer science and
computational thinking tests, such as the International Computer and Information
Literacy Study (designed for 13-year-old students), the OECD’s 2021 PISA Math and
Science assessment (15-year-olds), and the Advanced Placement Computer Science exam
(18-year-olds) (Fraillon et al., 2019; Hansen, Levesque, Valant & Quintero, 2018).
However, many of these initiatives focus on adolescence, long after the critical period of
early childhood when coding and robotic interventions may have formative impacts.

Page 2

Strawhacker, A., Relkin, E., Bers, M.U. (2022) Educational Designer, 4(15)

Retrieved from: http://www.educationaldesigner.org/ed/volume4/issue15/article60/

https://www.kinderlabrobotics.com/
https://www.terrapinlogo.com/
https://www.fisher-price.com/

Background

The current study explores the initial design of an assessment tool, Coding Stages
Assessment-KIBO (CSA-KIBO), to evaluate children’s computational fluency and
understanding of a robot and coding language designed specifically for preschool through
elementary aged children (the KIBO robot kit). In order to test how our assessment
performs with the youngest and least-experienced cohort of our assessment population,
our study focuses on preschool children with no prior coding experience. Bers (2020)
proposed the Coding Stages Framework as part of her Coding as Another Language (CAL)
pedagogical approach to introduce the idea that when children learn to code, they follow a
developmental progression through recognizable milestones, similar to the development
pathway to literacy, numeracy, and many other better-researched academic skills
(Clements & Sarama, 2004). Because of the expressive and communicative opportunities
that coding presents to young learners, Bers draws connections between developmental
skills shared by coding and literacy, such as reading, composition, revision, and creative
self-expression (Bers, 2020; Resnick & Robinson, 2017). This perspective, that coding
should be taught as an expressive form, is in direct response to narrow conceptions of
computer science education as an extension of logical reasoning, traditionally taught using
sequence-based puzzles, abstract problem sets, and other approaches that do not leverage
children’s creativity and agency in the learning process (Bers, Govind & Relkin, 2021;
Wing, 2011). By presenting coding as a language, complete with its own symbolic and
syntactic systems, the CAL approach shifts the learning goal from technical proficiency
with code, to fluency in conveying and interpreting ideas through original coded works
(Hudson et al., 2011).

In the following sections, we outline in more depth the Coding Stages Framework used to
design the assessment, describe findings from design research with related early childhood
coding assessments, and explore the unique context of assessing children’s knowledge
within robotic coding environments. Following this, we describe the current study’s CSA-
KIBO design approach.

Assessments of Young Children’s Coding and Robotic Knowledge
Prior research has explored the development of assessments to demonstrate young
children’s learning with educational programming and robotic tools, a unique challenge
given that written tests are not appropriate for this age group. In 2015, a research team
piloted an assessment for 4-6 year old students called Solve-Its, story-based tasks with
robotic main characters, which prompted children to use coding instructions to copy robot
actions described in the story-contexts (Strawhacker & Bers, 2015; Sullivan & Bers, 2018).
Solve-Its measured children’s programming ability using two metrics: block recognition
and sequencing ability. KIBO Mastery Challenges, a later iteration of Solve-Its, was
designed to assess students’ mastery of KIBO programming language and programming
concepts introduced in a curriculum (Hassenfeld et al., 2020). While these assessments
indicate proficiency in a range of algorithmic and logic-based skills, they were not able to
capture children’s ability to express themselves through programming, a key theoretical
aspect of the Coding Stages Framework. Additionally, they do not incorporate a
developmental perspective into the scoring system, making it difficult for educators and
practitioners to know how to meaningfully interpret results and compare students along
predicted developmental pathways.

Page 3

Strawhacker, A., Relkin, E., Bers, M.U. (2022) Educational Designer, 4(15)

Retrieved from: http://www.educationaldesigner.org/ed/volume4/issue15/article60/

One exception is the Coding Stages Assessment, an assessment based on Bers’ (2020)
Coding Stages Framework. Researchers de Ruiter and Bers (2021) first developed this
metric for use specifically with the ScratchJr coding environment, a tablet-based
programming app for children ages 5-7 years. As with the current study, a focus of that
design process was to create an assessment (the CSA-ScratchJr) to capture children’s
technical facility with the given programming language (e.g., the syntax and grammar), but
also situate their coding-medium fluency in communicating and expressing complex ideas
along a developmental pathway. This approach is aligned with the CAL curriculum and
philosophy of coding as an expressive, progressive, and linguistic form, and also with prior
research which showed that offering young children purposeful, goal-directed
programming and debugging assessment questions (rather than rote tasks) helps them
perform at a deeper and more engaged level (Lee & Ko, 2014). The purpose of exploring
children’s competence within a range of specific programming contexts, rather than
focusing on general computational thinking ability (e.g., in an “unplugged” setting) is to
allow children to leverage their context-dependent skills and fluency in order to best
demonstrate their developmental coding stage.

Development of the CSA-KIBO followed a similar method to the development of the CSA-
ScratchJr. Specifically, we applied a design-based research approach (e.g., Anderson &
Shattuck, 2012; Edelson, 2002) by leveraging findings from earlier versions of coding and
robotic assessments (e.g., Strawhacker & Bers, 2015; de Ruiter & Bers, 2021; Relkin et al.,
2021) and honing our design goals to focus on a developmentally-informed KIBO robotic
assessment for young children. As a methodology, design research emphasizes designing
educational interventions according to intentional theoretical specifications to achieve a
chosen learning outcome, iteratively implementing the intervention in real-world settings,
and using evidence from implementations to inform future trials and design modifications
(Edelson, 2002). In the following sections, we outline the design considerations,
principles, and criteria guiding our development of the CSA-KIBO and share results from
our early trials and iterative refinements as we work to approach a viable assessment
prototype ready for validation and scaling to broader education communities.

Design Considerations for Assessing Young Children
Young children represent a unique population for studying computational thinking and
computer science skills development (e.g., Chen, et al., 2017). Complex “if-then”
conditionals, variables, and abstract logical statements are typically beyond their capacity
(Janveau-Brennan & Markovits, 1999), and an assessment using these techniques would
poorly reflect their true abilities on foundational computer science tasks. Young children
are also prone to magical thinking as a way to explain the behavior of unknown or complex
systems, including technology (Mioduser et al., 2009). However, some research suggests
that this effect diminishes with increasing exposure to technology such as KIBO. Mioduser,
Levy, and Tallis (2009) investigated Kindergarten children’s utterances when observing a
robotic program being executed. As children developed more sophisticated
understandings of the robot’s program, their explanations shifted from animistic
descriptions of what the robot “wanted” to do, to explanations emphasizing patterns and
rules in the robot’s behavior. For this reason, any summative assessment should be
situated within the context of a developmentally-appropriate programming language or
computer environment that is familiar to the child.

Page 4

Strawhacker, A., Relkin, E., Bers, M.U. (2022) Educational Designer, 4(15)

Retrieved from: http://www.educationaldesigner.org/ed/volume4/issue15/article60/

Flannery and Bers (2013) and Vizner (2017) studied children’s longitudinal progression
through programming tasks, arguing that uptake of programming concepts such as symbol
recognition and sequencing are tied to developmental readiness. Strawhacker and Bers
(2019) examined child-made programs in a children’s coding platform for evidence of
mental representations related to computational concepts. In addition to finding age-
related achievement differences (with older children showing generally higher
understanding of the same programming environment over the same number of lessons),
they concluded that coding knowledge may link to many other developing knowledge
domains, including spatial reasoning and cause-and-effect logic. These studies echo
findings from developmental research on achievement gains in a variety of subjects, which
may be attributed to generalized, global growth as children progress through natural
developmental stages (Campbell et al., 2001). Common findings across these early studies
suggest that there may be a developmental or age-graded progression to children’s
performance on coding assessments, and thus, assessments should be designed with
accommodations for these narrow developmental bands.

Design Principles of a Robotic Assessment for PreK
To share useful evidence that can inform learning interventions, we posit that robotic
assessments for preschool aged children should capture the child’s level of fluency within a
coding language. Fluency with a coding language is rooted in an understanding of the
language’s syntax and grammar and indicates an ability to select and sequence commands
in a way that the robot will execute. As with natural language development, fluency with a
coding language involves change over time, with children progressively improving their
command of the language. Furthermore, the end goal is to be able to use the programming
language for creative expression, as another language to express a purposeful or
meaningful idea (Bers, 2020). Thus, assessments should investigate this nuance in
children’s coding performance, as this suggests a shift from syntax and grammar
exploration to actual expressive communication through technology.

Informed by prior research (e.g., Flannery and Bers, 2013; Mioduser, Levy, and Tallis,
2009; Relkin et al., 2020), we propose that assessments should be situated within the
context of a developmentally appropriate robotic environment, and they should be
repeatable to demonstrate change over time. Authentic assessment, a form of testing that
uses items and prompts relevant to the learning process, addresses both of these points
(Ming, Ming & Bumbacher, 2014; Shaffer & Resnick, 1999). Authentic assessment is
inherently repeatable because it involves children judiciously applying their developing
skills to negotiate a complex (but realistic) task (see, for example, Chapter 2 of Wiggins,
1998). Computers and new technologies, with their opportunities for connectedness and
audience-oriented experience design, are uniquely suited to support authentic assessment
(Shaffer & Resnick, 1999). Engaging learners in an authentic assessment experience is
another design principle we applied in our current design work.

Design Criteria for the CSA-KIBO
The purpose of the current study is to develop a valid and reliable assessment measure to
capture children’s understanding of the KIBO robot. In addition to being a useful measure
of the level of computational understanding that children can demonstrate through
building and programming with KIBO, the assessment is meant to offer insights into
children’s developmental coding stage as they progress through a curriculum. Based on
these needs, and informed by prior research on assessment development, we identified the
following design criteria for our assessment.

Page 5

Strawhacker, A., Relkin, E., Bers, M.U. (2022) Educational Designer, 4(15)

Retrieved from: http://www.educationaldesigner.org/ed/volume4/issue15/article60/

1. Theoretical alignment with our learning framework of choice
Theoretically, the tool should align with the Coding Stages Framework in order to place
children’s progression along a predictable developmental trajectory of coding knowledge
(Bers, 2020; de Ruiter & Bers, 2021). It should also be informed by the Coding as Another
Language pedagogy, to explore children’s fluency and expressiveness with the KIBO
robotic coding environment (Bers, 2020). To this end, we decided to incorporate a mix of
closed- and open-ended items, giving children an ability to demonstrate syntax
understanding (closed-ended) and purposeful creation (open-ended) with KIBO.

2. Developmentally appropriate and responsive to children’s learning needs
In order to be responsive to young children’s limited attention spans, we decided on an
ideal time limit of roughly 15-30 minutes per child for individualized assessment with a
robotic tool (Mioduser & Levy, 2010; Mioduser, Levy & Talis, 2009; Moyer & Gilmer, 1955;
Denner, J., Werner, L., Campe, S., & Ortiz, E. 2014). Additionally, the language and tasks
should be appropriate for preschool aged children, to avoid children’s limited language
ability, developing manual dexterity, and unfamiliarity with jargon artificially limiting
results (Sattler, 2014).

We wanted the assessment to be able to be re-administered to show change over time. We
aimed to apply a “low floor, high ceiling, wide walls” (Resnick & Robinson, 2017) design
model to ensure the test was sensitive enough for novices as well as experienced children
(Sattler, 2014). This also led us to explore adaptive administration, in which the test stops
after children have demonstrated their level capacity through enough incorrect answers.

3. Ease of administration and interpretation for educators
To best serve a classroom setting, the assessment should also be easy to administer. We
aimed to design the CSA-KIBO assessment to be brief (no more than 30 minutes) and easy
enough for relatively inexperienced teachers to administer successfully. Additionally, we
aimed to keep the assessment simple to score, with a straightforward coding stage output
corresponding to descriptive names (e.g., “Emergent Coder”) to better convey the meaning
of results to teachers and parents (Sattler, 2014).

Coding Stages Framework
The Coding Stages Framework presented by Bers (2020) describes the developmental
milestones exhibited by young children ages 4-7 years as they learn and gain mastery with
coding, progressing from simple and exploratory behaviors (e.g., naming and recognizing
coding command symbols) to more advanced skills and practices (e.g., sequencing
commands to create repeating or interactive computational behaviors). Along their
developmental pathway, children explore a range of powerful ideas from computer
science, including the distinction between hardware and software, the power of
sequencing, and the cause-and-effect relationships of conditional statements (e.g., “if-
then” or sensor-activated commands). Table 1 summarizes the coding stages, and what
behaviors might be observed in children at each stage. As with literacy development,
children progress individually and dynamically through these stages, independent of age
but related to their general development and readiness to explore coding tasks. Children
may exhibit different levels within the course of one activity, or show different mastery
depending on the learning context, etc. As de Ruiter and Bers explain,

Page 6

Strawhacker, A., Relkin, E., Bers, M.U. (2022) Educational Designer, 4(15)

Retrieved from: http://www.educationaldesigner.org/ed/volume4/issue15/article60/

Table 1 – Coding Stages and Corresponding Computational Concepts Mastered by
Children (Reprinted with author permission from de Ruiter & Bers, 2020)

Coding Stage Description

The child recognizes that technologies are human-engineered and are designed with
a variety of purposes.

The child understands the concept of symbolization and representation (i.e., a
command is not the behavior, but represents the behavior).
The child understands what a programming language and the purpose of its use is
(knows that a basic sequence and control structure exists).

The child is familiar with the basics of the interface (turn the tool on and off and
correctly interact).

This is a beginner’s stage.

The child understands that sequencing matters and that the order in which
commands are put together generates different behaviors.

The child has learned a limited set of symbols and grammar rules to create a simple
project.
The child can correctly create simple programs with simple cause and effect
commands.

The child can identify and fix grammatical errors in the code.

The child performs simple debugging through trial and error.

The child engages in goal-oriented command exploration.

The most growth can be seen at this stage. Children learn the basics of the
programming language and understand it can serve to create projects of their
choice.

The child has mastered the syntax of the programming language and can correctly
create programs.

The child is personally motivated to create complex programs.

The child understands how to distinguish and fix logical errors in the code.
The child is beginning to be strategic in debugging.

This stage is characterized by the child moving from a “learning to code” to a
“coding to learn” creative stance.

“the developmental progression between coding stages is not always sequential, orderly,
and cumulative, [although] the coding stages have some hierarchy based on syntax and
grammar – mastery of simpler structures/commands (e.g., start/end) occurs before
mastery of more complex structures (e.g. if statement or repeat loops). […] In line with the
Coding as Another Language (CAL) approach, the Coding Stages framework also includes
meaningfulness and expression at every stage, as well as in the final stage Purposefulness.
Thus, at each stage it is observed if and how children are able to use coding in expressive
ways” (de Ruiter & Bers, 2021, p. 5).

The term “stages” is inspired by the universal stages of development posited by Piaget
(Piaget, 1963). Coding stages refer to learned skills, and are indicators of growth in
mastery of creative, expressive coding that occur when children learn a developmentally-
appropriate coding language.

Emergent1.

Coding and
Decoding

2.

Fluency3.

Page 7

Strawhacker, A., Relkin, E., Bers, M.U. (2022) Educational Designer, 4(15)

Retrieved from: http://www.educationaldesigner.org/ed/volume4/issue15/article60/

Coding Stage Description

The child understands how to combine multiple control structures and create
nested programs that achieve complex sequencing.

The child engages in more goal oriented logical exploration with their programs.

The child is personally motivated to create complex programs.
The child is strategic in debugging and has developed strategies.

The child learns how to learn new commands or novel uses of the interface.

This stage is characterized by the child’s ability to use their knowledge to create a
personally meaningful project and if needed, acquire new knowledge on her own to
meet the demands of the project.

The child can skillfully create complex programs for their needs and purposes.

The child understands how to analyze, synthesize, and translate abstract concepts
into code and vice versa.

The child is able to identify multiple ways to translate abstract concepts into code.
The child understands how to create programs that involve user’s input.

The child can create multiple programs that interact with one another.

The child can debug multiple control structures.

This stage is characterized by the child being able to code in a rapid and efficient
manner at high levels of abstraction, requiring skill and flexibility and applying
those skills to create a personally meaningful project. A child who reaches this stage
has mastered all of the commands, grammar and syntax, of the programming
language and has the ability to express herself through the project they create.

New
Knowledge

4.

Purposefulness5.

KIBO Robot
The KIBO robot kit is a screen-free educational platform that is designed for young
children in preschool through early elementary school. It allows children to explore
coding, engineering, and robotics in a playful, developmentally appropriate way (Figure 1).
KIBO was initially designed in 2011 as a research prototype (NSF DRL-1118897) and was
launched as a commercially-available product in 2013. Over a decade of research has been
conducted on KIBO, involving thousands of children and teachers and families from
around the US and the world (Albo-Canals et al., 2018; Bers 2020). KIBO was iteratively
designed, informed by numerous focus groups and empirical experiments with children,
caregivers, and teachers. The robot is intuitively easy to physically build and creatively
program with coding blocks that encourage syntactically correct connections (e.g., no
blocks can be added before a BEGIN block or after an END block), and hardware that can
attach crafts, recycled materials, and other familiar early childhood building materials to
the robot (KinderLab Robotics, 2021).

Page 8

Strawhacker, A., Relkin, E., Bers, M.U. (2022) Educational Designer, 4(15)

Retrieved from: http://www.educationaldesigner.org/ed/volume4/issue15/article60/

Figure 1 – The programmable KIBO robot

The programmable KIBO robot (top center), wooden programming blocks to
give coding instructions, the KIBO (middle), parameter stickers (e.g., Until Near,
Forever) to define repeat and conditional statements (bottom), module
attachments (e.g., sound recorder) and sensors (light, sound, distance) to make
KIBO interactive (attached to KIBO and near coding blocks), and attachable art
platforms to customize physical aesthetic of robot (top left, top right, and
attached to KIBO) (Reprinted with author permission from Relkin et al., 2021)

KIBO is also screen-free, in line with research that tangible interfaces may be more
beneficial for engaging young children in early coding experiences (e.g., Pugnali, Sullivan
& Bers, 2017; Strawhacker & Bers, 2019). KIBO’s screen-free approach has made it
accessible for audiences beyond the U.S. K-2 classroom. Researchers have found that
children diagnosed with autism spectrum disorder, students in various countries, and
children coding with family members in informal learning spaces outside of school are all
able to learn to code and explore computational thinking concepts like modularity, and
control structures with the KIBO robot (Albo-Canals et al., 2018; Elkin et al., 2018; Relkin
et al., 2020; Strawhacker & Bers, 2019; Sullivan, et al., 2018). KIBO has been empirically
shown to increase coding and computational thinking skills. For example, a study was
conducted in which 848 students were given an intergraded KIBO robotics coding and
literacy curriculum called CAL-KIBO (Coding as Another Language - KIBO Robotics).
Children’s computational thinking skills as measured by the TechCheck assessment
improved significantly after seven weeks of engagement with KIBO whereas a control
group who participated in typical classroom activities without coding did not improve
significantly (Relkin et al., 2021; Bers et al., 2021). Research has confirmed that KIBO
supports PreK-2nd grade children’s learning of discipline-specific content in foundational
areas of math and literacy, in addition to computational thinking skills (Albo-Canals et al.,
2018; Bers, 2020). Beyond coding, engaging with KIBO has been shown to have positive
impacts on children’s social-emotional development under the Positive Technological
Development and Palette of Virtues Frameworks (Bers, 2020, 2021; Relkin et al., 2020).

Page 9

Strawhacker, A., Relkin, E., Bers, M.U. (2022) Educational Designer, 4(15)

Retrieved from: http://www.educationaldesigner.org/ed/volume4/issue15/article60/

The KIBO Coding Stages Assessment
The KIBO Coding Stages Assessment (CSA-KIBO) is a 30-item assessment designed to
determine children’s level of performance with the KIBO robotic kit. After formal
validation, CSA-KIBO training, certification, and the downloadable assessment will be
available to request at the following website: https://sites.tufts.edu/devtech/csa-kibo/.
Assessments are administered one-on-one, with a researcher voicing questions and
recording answers, and a child using a KIBO robot and a selection of parts and coding
blocks to physically demonstrate answers. Researchers provide a predetermined selection
of parts at the beginning of each level of the assessment, gradually increasing the amount
and variety of parts available to the child.

In keeping with our design criteria of theoretical alignment with the Coding Stages
Framework, each item assesses an aspect of one of the coding stages described by Bers
(2020). (See de Ruiter & Bers, 2021, for further discussion of how the stage hierarchy
impacts the CSA-KIBO stage item progression and scoring system.) Figure 2 shows the
progression of items throughout the assessment, and how items are related to elements of
the Coding Stages Framework. Children answer questions within a single stage of the
assessment at once, with the exception of the Purposefulness stage. Because of the
theoretical perspective within the Coding Stages Framework that children can exhibit
purpose in their coded creations regardless of coding fluency, open-ended Purposefulness
items were administered after each stage. For example, Purposefulness item 5.1, asks
children to choose the KIBO block that they think represents a dance movement, and
requires only an Emergent level of coding knowledge to correctly respond. Although
children respond to Purposefulness items after each successful stage, scoring a
Purposefulness stage is only possible for children who surpass the New Knowledge stage.

In the context of this assessment study, children who test below the Emergent stage
(meaning they have little to no understanding of technologies as human created and
engineered, or how a system of coded symbols could control a machine) are classified as
“Precoders” (see Figure 2). While not technically a stage in the Coding Stages Framework,
Precoder is a useful category to indicate a very naive level of technological and
programming awareness.

Figure 2 – CSA-KIBO Test Structure and Item Alignment with Coding
Stages Framework

Page 10

Strawhacker, A., Relkin, E., Bers, M.U. (2022) Educational Designer, 4(15)

Retrieved from: http://www.educationaldesigner.org/ed/volume4/issue15/article60/

The CSA-KIBO is also designed to respond to children’s developmental needs in terms of
attention, focus, and challenge. Questions are written for PreK comprehension levels, with
simple prompts that can be answered using language or physical demonstration (example
question: “Can you point to the coding block that will make KIBO move forward?”).
Researchers can repeat questions up to three times and may name the parts that children
point to throughout the assessment. Total length of time to conduct the assessment is
limited to focus children’s attention, and occasional breaks are available throughout the
assessment.

Our final design criteria required that the assessment be easy to administer and results
easy to interpret. Administration is simplified using a script for questions with visuals to
show which parts should be displayed in front of children, and brief explanations of
satisfactory and unsatisfactory answers (all items are scored as a binary “correct or
incorrect”). Results show the child’s threshold stage (i.e., the highest stage where they
score at least 5 out of 6 correct answers). A child must correctly answer 5 out of 6
questions in a stage to progress to the next one. Correct and incorrect response definitions
were developed for each item, as well as acceptable paraphrased prompts if children did
not understand the question. For example, in answer to the question “How do you turn
KIBO on?”, an acceptable paraphrase prompt was “I want to turn on KIBO. What do I
need to do?”. Acceptable correct answers included pressing or describing the triangle-
shaped ON button, and incorrect responses included pressing or describing somewhere
else other than the triangle button, saying “I don’t know”, requesting to skip the question,
or offering no answer. For a more complete illustration of sample items with correct and
incorrect responses, see Table 2. A student who scores less than 5 correct in the first
Emergent stage of questions is automatically categorized as a Precoder. In order to
operationalize stages for teachers, each stage corresponds with the coding stage captured
by most of its questions, so stage 1 denotes an Emergent coder, stage 2 indicates Coding
and Decoding, etc. These titles are self-descriptive, and teachers can also seek more
information by referring to the original Coding Stages Framework, developed for
practitioners as well as researchers (Bers, 2020).

Page 11

Strawhacker, A., Relkin, E., Bers, M.U. (2022) Educational Designer, 4(15)

Retrieved from: http://www.educationaldesigner.org/ed/volume4/issue15/article60/

Investigating Assessment Administration

Table 2 – Sample CSA-KIBO Items with Correct and Incorrect Response Criteria.

Stage Sample Item Visual Prompt
(KIBO blocks on
table in front of

child)

Rephrase Correct
Responses

Incorrect
Responses

Emergent “Take a look at
these blocks.
Which block

do you always
need to start

your
program?”

“Which block goes
first?”

Child points to or
describes green

Begin block

Child does not
point to or

describe green
Begin block, says

I don’t
know/skip, or no

answer

Coding and
Decoding

“Look at this
program. I

want KIBO to
first move

forward and
then spin.

How can you
make this
program?”

“How can you change
this program so that
KIBO moves forward

before it spins?”

Child switches
order of Spin and
Forward blocks,

or scans Forward
before Spin

Child does not
change order of

program or
scanning, says I

don’t know/skip,
or no answer

Fluency "Look at this
program.

Please make
KIBO move
forward 3

times instead
of 2.”

“Please fix my
program so KIBO
moves forward 3

times.”

Child replaces 2
parameter with 3

parameter in
Repeat Loop, or
scans Forward 3

times

Child does not
change or scan

program
correctly, says I

don’t know/skip,
or no answer

New
Knowledge

Point to light
block and say
“What is the

difference
between this

block…..,”
Put if and end
if around light
block and say
“...and this set

of blocks?”

“What changes when
the light block has

these blocks around
it?”

Child verbally
answers that one

block makes KIBO
light up and the
group of blocks

makes KIBO light
up only if it is

near something

Child gives
another

explanation as to
why they’re

different, says
there is no

difference, says I
don’t know/skip,

or no answer

Purposeful-
ness

“Pretend
KIBO is a car.

Make a
program that
makes KIBO

drive and
honk at other

cars.”

“Make a program to
make KIBO drive
and honk at other

cars.”

Child either uses a
motion and a
Beep block, or

uses other blocks
and explains their

idea

Child arranges
blocks with no

explanation, says
I don’t

know/skip, or no
answer

We conducted a study to address the following research question: How does the mode of
administration of the CSA-KIBO robotics assessment impact performance among
preschool students?

By observing students’ behavior when carrying out this investigation, we incidentally
gathered important information related to the developmental appropriateness of the
assessment and student engagement during administration, as is reported below.

Page 12

Strawhacker, A., Relkin, E., Bers, M.U. (2022) Educational Designer, 4(15)

Retrieved from: http://www.educationaldesigner.org/ed/volume4/issue15/article60/

Method
Participants & Context
The 151 preschool students who participated in this study were recruited from three sites:
five non-profit Head Start Preschools in Missouri (Missouri Head Starts), one non-profit
preschool in the Greater Boston area serving children from families experiencing or at risk
of homelessness (Boston-area non-profit), and one tuition-based lab school in the Greater
Boston Area following a local public school district curriculum (Boston-area lab school).
Our sample includes organizations serving preschool children from families of diverse
ethnic, socioeconomic, and linguistic backgrounds. All children were between the ages of
2.9 - 5.3 years and had little or no prior experience with the KIBO robotics kit.

Procedure
After obtaining informed consent from families, children were invited to leave their
classroom during free-play time to play coding games one-on-one with a trained
researcher who administered the CSA-KIBO. If children opted not to participate, or opted
to leave the assessment partway through, they were allowed to leave with no
consequences, and were invited back on at most one other occasion on a different day
within the month.

Three forms of administration were used to explore administration types. At one site, we
administered our theory-informed adaptive version of the assessment, which required 5
out of 6 correct answers to progress to the next stage, or automatically terminated the
assessment (in other words, the assessment terminated at the stage beyond threshold
performance). We predicted that, according to the Coding Stages Framework, PreK
children with no (or limited) prior robotic experience would test in the Precoding stage (0-
4 correct items) and so the computer-based test was programmed to terminate once
children reached their threshold stage. At two separate sites, we simultaneously explored a
non-adaptive version of the CSA-KIBO (terminating after completion of all possible
questions), to assess whether at baseline, PreK children could perform on any of the
questions we categorized as more advanced (based on prior research with early childhood
coding curricula and performance). We subsequently altered our non-adaptive
administration to be semi-adaptive (terminating at the Fluency stage conditional on
scoring at least one question correct on each of the previous levels), as a more
developmentally appropriate response to children’s patience and behavioral tolerance with
advanced KIBO questions beyond their coding stage. In this semi-adaptive version of the
assessment, the highest attainable stage was artificially capped at the Fluency stage.

Although the semi-adaptive test continues to ask items beyond the child’s threshold
performance stage (the highest stage on which they score >4 correct), children are still
classified at their threshold. In scoring all administration formats, students were classified
at the highest stage when they correctly answered 5 out of 6 questions, with students
earning a score of Precoder for less than 5 correct items in the Emergent stage. Figure 3
shows the highest possible stage and testing constraints of each CSA-KIBO administration
format.

Page 13

Strawhacker, A., Relkin, E., Bers, M.U. (2022) Educational Designer, 4(15)

Retrieved from: http://www.educationaldesigner.org/ed/volume4/issue15/article60/

Figure 3 – Highest Attainable Stage for CSA-KIBO Administration
Formats

A total of 151 preschool students were administered the CSA-KIBO assessment prior to
formal coding instruction, with different formats explored at various sites (see Table 3). 29
students were administered the non-adaptive version and received all questions on the
assessment regardless of performance. 65 students received the semi-adaptive version of
the assessment, which allowed 5 incorrect answers per stage and was capped at the
Fluency stage. Finally, 57 students received the adaptive version of the assessment, which
stopped once children gave 2 or more wrong answers on a given stage of the assessment.

Table 3 – Distribution of Administration Formats across Sites and Students.

Administration Format Sites (Students)
Adaptive Boston-area non-profit (n = 57)

Semi-adaptive Missouri Head Starts (n=65)
Non-adaptive Missouri Head Starts (n = 18),

Boston-area lab school (n = 11)

Based on research with earlier assessment tools to measure young children’s programming
skills, and the fact that our sample comprised children at the youngest end of our intended
age range, with limited prior exposure to coding tools, we hypothesized that our sample
would demonstrate the Precoding stage of proficiency.

Results
CSA-KIBO Administration
For the non-adaptive format of the assessment, administration was not completed in 12
out of the 29 cases (41.37%) because the child either indicated they wanted to stop or skip
questions or time ran out. In comparison, none of the children administered the adaptive
format and only 1 child who received the semi-adaptive version indicated that they wanted
to stop. The average time it took children to complete the CSA-KIBO was M = 25.42
minutes, mdn= 26.18 minutes for the non-adaptive assessment, M = 18.03 minutes, mdn=
12.93 minutes for the semi-adaptive assessment and M = 11.51, mdn= 6.63 minutes for the
adaptive version of the assessment. Note this time included some children taking breaks
during testing for up to 5 minutes.

Page 14

Strawhacker, A., Relkin, E., Bers, M.U. (2022) Educational Designer, 4(15)

Retrieved from: http://www.educationaldesigner.org/ed/volume4/issue15/article60/

Descriptives

For all formats of administration, each question answered correctly scored 1 point. There
was a maximum of 30 questions asked for 30 possible points when children were
administered the non-adaptive and adaptive formats and a maximum of 20 questions for
20 possible points when children were administered the semi-adaptive format. Table 4
shows descriptive statistics for each type of CSA-KIBO administration. Scores ranged from
0-19 points. Figure 4 shows the percentage of students’ raw CSA-KIBO total scores by each
format of the assessment. The non-adaptive administration format does provide a greater
range of raw-score outcomes and higher stage classifications. However, this greater
discrimination comes at the price of much greater attrition than the other two
administration formats.

Descriptive Statistics for students’ scores by administration type

CSA-KIBO type N Mean SD Mode Median Min Max Skewness

Adaptive 57 2.37 1.28 2 2 0 7 0.62

Semi-adaptive 65 3.54 2.63 3 3 0 9 0.2

Non-adaptive 29 7.41 4.63 4, 6 7 0 19 0.64

Figure 4 – Percentage of participants by total CSA-KIBO score for the
three administration formats

Coding Stages Assignments
Figure 2 shows how the coding stage that each child is assigned to is derived from the
students' performance. As Table 5 shows, regardless of the format administered, the
majority of students were placed in the Precoding stage. This is because most students
responded correctly to less than 5 questions on the first stage (see Table 5). A majority of
participants were placed at the floor of the assessment regardless of the mode of

Page 15

Strawhacker, A., Relkin, E., Bers, M.U. (2022) Educational Designer, 4(15)

Retrieved from: http://www.educationaldesigner.org/ed/volume4/issue15/article60/

Discussion

administration. This indicates that the level of difficulty was too high (as predicted). We
explored whether children could answer any of the more advanced questions by
administering every question to the children (non-adaptive format). All questions in the
“New Knowledge” (Q4.1 through Q4.6) and the more advanced “Purposefulness” (Q5.3
through Q5.6) stages were answered correctly by 2 (5%) or less of children. The
assessment is therefore performing as expected for a coding naïve sample.

Table 5 – Percentage of students assigned to each Coding Stage

Format Precoding Emergent Coding and
Decoding

Fluency New
Knowledge

Purposeful-
ness

Adaptive

(n = 57)

98.24% 1.75% 0 0 0 0

Semi-
adaptive

(n = 65)

96.92% 3.07% 0 0 0 0

Non-
adaptive

(n = 29)

79.31% 10.34% 10.34% 0 0 0

This exploratory study using the CSA-KIBO in preschool aged coding-naïve children
showed differences in outcome related to the format of administration. Completion of the
assessment was more successful when adaptive or semi-adaptive formats were
implemented. A possible floor effect was present with all formats of administration, which
is not unexpected given the focus of the instrument on coding skills and the lack of coding
experience in this design study cohort.

Impact of Administration Format on Assessment outcomes
Our research question asked, “How does the mode of administration (adaptive, semi-
adaptive or non-adaptive) impact CSA-KIBO results in preschool students?”

We found the non-adaptive assessment took significantly longer (about 25 minutes on
average) and nearly half of the children requested to end the assessment early, compared
with no drop-outs from the adaptive version. The semi-adaptive administration (average
12-18 minutes) cut down on time of administration and only had a single child request to
end early. In comparison, the adaptive version of the assessment significantly reduced the
average test time (7 minutes) and showed very similar Coding Stage placement and total
raw scores to children who took the slightly longer semi-adaptive assessment.

It is likely that if more questions are administered to children, they have a greater
opportunity of getting a higher score which is what the results indicated. However, in this
study we cannot say with certainty whether differences in the mean scores represent actual
differences associated with the three administration methods or factors such as the
differences in the schools from which the respective samples were drawn.

In deciding which administration format to recommend, rather than base our conclusion
on score distributions, we have been persuaded by the advantages of the adaptive version
of the assessment in terms of its brevity and ease of administration. There may be other
contexts in which the non-adaptive or semi-adaptive versions offer advantages (such as
with older and/or children with prior coding experience). While this study illustrates the

Page 16

Strawhacker, A., Relkin, E., Bers, M.U. (2022) Educational Designer, 4(15)

Retrieved from: http://www.educationaldesigner.org/ed/volume4/issue15/article60/

utility of the adaptive version of the assessment for coding-naive preschoolers, additional
studies will be needed to establish how the instrument performs with more advanced and
older children.

Developmental Appropriateness of the CSA-KIBO
In addition to addressing our question about administration format, we examined
incidental observations about student and assessor experience while taking the
assessment.

Children showed engagement and enthusiasm during early items on the assessment,
although attention spans waned during later items, particularly during the non-adaptive
administration (longest assessment format). We attribute this to the lengthy
administration time and inappropriateness of the advanced questions for novice robotics
students. In the shortened adaptive form, the assessment was sufficiently engaging and
appropriate for all children in the sample to complete the required questions.

From an anecdotal perspective, researchers noted that the adaptive format also took less
time per child to administer and required less physical set-up of the materials and
computerized form to collect responses.

Children in our sample performed predominantly at a low “Precoding” stage. This was
consistent with our prediction, based on the sample’s low level of prior experience with
KIBO. We interpret this to mean that the CSA-KIBO was unlikely to register “false
positives,” that is, to incorrectly categorize inexperienced children at a higher coding stage.
Thus, our empirical results are consistent with what we would expect based on our
theoretical framework and intended design.

Limitations and Future Work
None of the students in the present study surpassed the “Coding and Decoding” stage in
our scoring system. This finding is positive for establishing that the CSA-KIBO is
appropriate for the youngest and least-experienced members of our intended audience,
but many questions remain about how the assessment fares with children who belong in
more advanced coding stages. Future work will need to explore the CSA-KIBO with older
children, who are likely to score higher than younger peers based on general
developmental growth, as in other assessment research (e.g., Campbell et al., 2001).
Additionally, we will seek to pilot with children who have more diverse experiences with
robotics beyond pre-exposure and more diverse background of sample.

There is also no data from this study on whether results can be interpreted with ease by
families and teachers. This limitation will be explored in future work.

A long-term goal of this project is to create a valid, reliable, and robust assessment metric
for easily evaluating a student’s developmental coding level. This would ideally include
longitudinal assessments of the same children at various time points, for example pre- and
post-test data from a robotics intervention, or multiple time-point assessments of children
over a school year. With these longitudinal data, we plan in future to conduct validation
investigations involving item response theory and classical test theory analyses to
determine the psychometric properties of the CSA-KIBO assessment.

Page 17

Strawhacker, A., Relkin, E., Bers, M.U. (2022) Educational Designer, 4(15)

Retrieved from: http://www.educationaldesigner.org/ed/volume4/issue15/article60/

Conclusion

Acknowledgements

The research sought to investigate the viability of a novel KIBO coding assessment tool,
aligned with Bers’ (2020) Coding Stages Framework, for use with our intended audience of
very young children. In the current study, we applied a design research approach to pilot
this assessment with children at the youngest and least experienced end of our intended
audience of children aged 3-9 years and explored a range of administration formats to
learn the relative impact on implementation ease and evaluative success.

Of the three administration formats explored, the adaptive format, the shortest and most
convenient method, showed the best combination of effectively maintaining children’s
interest and engagement for the duration of the session and keeping administration time
brief, while accurately capturing the expected stage for preschool children with little or no
coding experience. Our results using the adaptive method were consistent with our
predictions based on the coding stages framework that coding naïve children should be in
the Precoding stage. The non-adaptive and semi-adaptive formats may be useful in certain
contexts with the understanding that attrition may be higher than with the adaptive
format.

Design research is often described with expressions like “flying the plane while building
it,” to indicate the iterative and responsive nature of this type of research method. While
the purpose of the design research method is to develop new methods, models, and tools to
further learning and research, an equally important and often overlooked aspect of design
research is the process of refining the implementation approach used to test designs,
informed by evidence from successive trials (Edelson, 2002). From a design perspective,
we consider the major contribution from this study to be a focused exploration of
assessment administration as a critical aspect of assessment design. Based on our findings,
a simple adaptive administration format showed sufficient success to be used in future
trials of the CSA-KIBO with a larger, more diverse sample. In future work, as we work to
validate the assessment CSA-KIBO with data collected from a wide array of learners before
and after they engage in an implementation of the CAL curriculum, we feel confident in
applying our research-informed adaptive administration format.

The research team gratefully acknowledges generous funding support from the LEGO
Foundation for the Playful Engineering-Based Learning project (LEGO Foundation COVID
Recovery Grant). We also thank all the members of the DevTech Research Group,
especially Madhu Govind and Apittha Unahalekhaka, who contributed to the collection
and analysis of these data. Finally, we are grateful to the St. Louis Missouri Urban League,
especially Dr. Gwendolyn Diggs and Dr. Miranda Avant-Elliot, as well as the Eliot-Pearson
Children’s School, the Horizons for Homeless Children preschool center, the Head Start
preschool centers, and all the children, families, teachers, and administrators who hosted
us and made this study possible.

Page 18

Strawhacker, A., Relkin, E., Bers, M.U. (2022) Educational Designer, 4(15)

Retrieved from: http://www.educationaldesigner.org/ed/volume4/issue15/article60/

References
Albo-Canals, J., Barco, A., Relkin, E., Hannon, D., Heerink, M., Heinemann, M., Leidl, K.

& Bers, M. (2018).
A Pilot Study of the KIBO Robot in Children with Severe ASD.
International Journal of Social Robotics, 10(3), 371-383. Advance online
publication. doi:10.1007/s12369-018-0479-2

Anderson, T. & Shattuck, J. (2012).
Design-based research: A decade of progress in
education research? Educational researcher, 41(1), 16-25.

Bers, M. (2020).
Coding as a Playground: Programming and Computational Thinking in
the Early Childhood Classroom, Second Edition. New York, NY: Routledge Press.

Bers, M. (2021).
Coding, robotics and socio-emotional learning: developing a palette of
virtues PIXEL-BIT. Revista de Medios y Educación, 62, 309-322.

Bers, M., Govind, M. & Relkin, E. (2021)
Coding as Another Language: Computational
Thinking, Robotics, and Literacy in First and Second Grade. In Ottenbreit-Leftwich,
A. & Yadav, A. (Eds.) Computational Thinking in PreK-5: Empirical Evidence for
Integration and Future Directions. ACM and the Robin Hood Learning +
Technology Fund, New York, NY

Campbell, F. A., Pungello, E. P., Miller-Johnson, S., Burchinal, M. & Ramey, C. T. (2001).
The development of cognitive and academic abilities: Growth curves from an early
childhood educational experiment. Developmental Psychology, 37(2), 231–242. htt
ps://doi.org/10.1037/0012-1649.37.2.231

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X. & Eltoukhy, M. (2017).
Assessing
elementary students’ computational thinking in everyday reasoning and robotics
programming. Computers and Education, 109, 162-175.

Clements, D. H. & Sarama, J. (2004).
Learning trajectories in mathematics education.
Mathematical thinking and learning, 6(2), 81-89.

Code.org, CSTA & ECEP Alliance. (2021).
2021 State of computer science education:
Accelerating action through advocacy. Retrieved from https://advocacy.code.org/s
tateofcs

Denner, J., Werner, L., Campe, S., & Ortiz, E. (2014). Pair programming: Under what
conditions is it advantageous for middle school students?. Journal of Research on
Technology in Education, 46(3), 277-296.

de Ruiter, L. E. & Bers, M. U. (2021).
The Coding Stages Assessment: development and
validation of an instrument for assessing young children’s proficiency in the
ScratchJr programming language. Computer Science Education, 1-30.

Edelson, D. C. (2002).
Design research: What we learn when we engage in design. The
Journal of the Learning sciences, 11(1), 105-121.

Elkin, M., Sullivan, A. & Bers, M. U. (2018).
Books, Butterflies, and ‘Bots: Integrating
Engineering and Robotics into Early Childhood Curricula. In L. English and T.
Moore (Eds.), Early Engineering Learning (225-248). Singapore: Springer.
doi:10.1007/978-981-10-8621-2_11

Page 19

Strawhacker, A., Relkin, E., Bers, M.U. (2022) Educational Designer, 4(15)

Retrieved from: http://www.educationaldesigner.org/ed/volume4/issue15/article60/

https://doi.org/10.1037/0012-1649.37.2.231
https://advocacy.code.org/stateofcs

Flannery, L. P. & Bers., M. U. (2013).
Let’s dance the “robot hokey-pokey!”: children’s
programming approaches and achievement throughout early cognitive
development. Journal of Research on Technology in Education, 46(1), 81–101. htt
p://ase.tufts.edu/DevTech/publications/JRTE-robot-hokey-pokey.pdf

Fraillon, J., Ainley, J., Schulz, W., Duckworth, D. & Friedman, T. (2019).
IEA
international computer and information literacy study 2018 assessment
framework (p. 74). Springer Nature.

Hansen, M., Levesque, E., Valant, J. & Quintero, D. (2018).
The 2018 Brown Center report
on American education: How well are American students learning. Washington,
DC: The Brookings Institution.

Hassenfeld, Z. R., Govind, M., de Ruiter, L. E. & Bers, M. U. (2020).
If You Can Program,
You Can Write: Learning Introductory Programming Across Literacy Levels.
Journal of Information Technology Education: Research, 19, 65-85 https://doi.or
g/10.28945/4509

Hsu, T. C., Chang, S. C. & Hung, Y. T. (2018).
How to learn and how to teach
computational thinking: Suggestions based on a review of the literature. Computers
& Education, 126, 296-310.

Hudson, R. F., Isakson, C., Richman, T., Lane, H. B. & Arriaza-Allen, S. (2011).
An
examination of a small-group decoding intervention for struggling readers:
Comparing accuracy and automaticity criteria. Learning Disabilities Research &
Practice, 26(1), 15–27. https://doi.org/10.1111/j.1540-5826.2010.00321.x

International Society for Technology in Education. (2007).
Standards for technological
literacy. https://www.iteea.org/File.aspx?id=67767&v=b26b7852

Janveau-Brennan, G. & Markovits, H. (1999).
The development of reasoning with causal
conditionals. Developmental Psychology, 35(4), 904.

Kazakoff, E. R. & Bers, M. U. (2014).
Put your robot in, put your robot out: Sequencing
through programming robots in early childhood. Journal of Educational
Computing Research, 50(4), 553-573.

KinderLab Robotics, (2021).
Awards. Retrieved from: https://kinderlabrobotics.com/awa
rds/

Lee, M. J. & Ko, A. J. (2014, July).
A demonstration of gidget, a debugging game for
computing education. In 2014 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC) (pp. 211-212). IEEE.

Liao, Y. K. C. & Bright, G. W. (1991).
Effects of computer programming on cognitive
outcomes: A meta-analysis. Journal of educational computing research, 7(3), 251-
268.

Metz, S. S. (2007).
Attracting the engineering of 2020 today. In R. J. Burke, M. C. Mattis &
E. Elgar (Eds.), Women and minorities in science, technology, engineering and
mathematics: Upping the numbers (pp. 184-209). Northampton, MA: Edward
Elgar Publishing.

Page 20

Strawhacker, A., Relkin, E., Bers, M.U. (2022) Educational Designer, 4(15)

Retrieved from: http://www.educationaldesigner.org/ed/volume4/issue15/article60/

http://ase.tufts.edu/DevTech/publications/JRTE-robot-hokey-pokey.pdf
https://doi.org/10.28945/4509
https://doi.org/10.1111/j.1540-5826.2010.00321.x
https://www.iteea.org/File.aspx?id=67767&v=b26b7852
https://kinderlabrobotics.com/awards/

Ming, V., Ming, N. & Bumbacher, E. (2014).
Aligning learning with life outcomes through
naturalistic assessment. Socos LLC white paper.

Mioduser, D. & Levy, S. T. (2010).
Making sense by building sense: Kindergarten
children’s construction and understanding of adaptive robot behaviors.
International Journal of Computers for Mathematical Learning, 15(2), 99-127.

Mioduser, D., Levy, S. T. & Talis, V. (2009).
Episodes to scripts to rules: Concrete-
abstractions in kindergarten children’s explanations of a robot’s behavior.
International Journal of Technology and Design Education, 19(1), 15-36.

Moyer, K. E. & Gilmer, B. V. H. (1955).
Attention spans of children for experimentally
designed toys. The Journal of genetic psychology, 87(2), 187-201.

Myers, E. K. (2021).
The Role of Executive Function and Self-Regulation in the
Development of Computational Thinking. In M. Bers (Ed.) Teaching
Computational Thinking and Coding to Young Children (pp. 64-83). IGI Global. ht
tps://doi.org/10.4018/978-1-7998-7308-2.ch004.

NAEYC & Fred Rogers Center for Early Learning and Children’s Media. (2012).
Technology and interactive media as tools in early childhood programs serving
children from birth through age 8. Joint position statement. www.naeyc.org/files/
naeyc/file/positions/PS_technology_WEB2.pdf

Piaget, J. (1963).
The attainment of invariants and reversible operations in the
development of thinking. Social research, 283-299.

Pugnali, A., Sullivan, A. & Bers, M.U. (2017).
The Impact of User Interface on Young
Children’s Computational Thinking. Journal of Information Technology
Education: Innovations in Practice, 16, 172-193.

Relkin, E., de Ruiter., L., Bers, M. U. (2020).
TechCheck: Development and Validation of
an Unplugged Assessment of Computational Thinking in Early Childhood
Education. Journal of Science Education and Technology. DOI: 10.1007/s10956-
020-09831-x

Relkin, E., de Ruiter, L.E., Bers, M.U. (2021).
Learning to Code and the Acquisition of
Computational Thinking by Young Children. Computers & Education, 169. https://
doi.org/10.1016/j.compedu.2021.104222

Resnick, M. & Robinson, K. (2017).
Lifelong kindergarten: Cultivating creativity through
projects, passion, peers, and play. MIT press.

Royal Society. (2017).
After the reboot: Computing education in UK schools. Policy
Report.

Sattler, J. M. (2014).
Foundations of behavioral, social and clinical assessment of
children. Jerome M. Sattler, Publisher

Shaffer, D. W. & Resnick, M. (1999).
" Thick" authenticity: New media and authentic
learning. Journal of interactive learning research, 10(2), 195-216.

So, H. J., Jong, M. S. Y. & Liu, C. C. (2020).
Computational thinking education in the
Asian Pacific region. The Asia-Pacific Education Researcher, 29(1), 1-8.

Page 21

Strawhacker, A., Relkin, E., Bers, M.U. (2022) Educational Designer, 4(15)

Retrieved from: http://www.educationaldesigner.org/ed/volume4/issue15/article60/

https://doi.org/10.4018/978-1-7998-7308-2.ch004
http://www.naeyc.org/files/naeyc/file/positions/PS_technology_WEB2.pdf
https://doi.org/10.1016/j.compedu.2021.104222

Strawhacker, A. L. & Bers, M. U. (2015).
“I want my robot to look for food”: Comparing
children’s programming comprehension using tangible, graphical, and hybrid user
interfaces. International Journal of Technology and Design Education, 25(3), 293-
319. doi:10.1007/s10798-014-9287-7

Strawhacker, A. & Bers, M. U. (2019).
What they learn when they learn coding:
investigating cognitive domains and computer programming knowledge in young
children. Educational Technology Research and Development, 67(3), 541-575.

Sullivan, A. & Bers, M.U. (2018).
Investigating the use of robotics to increase girls’ interest
in engineering during early elementary school. International Journal of
Technology and Design Education, 29, 1033-1051. doi:10.1007/s10798-018-9483-y

Svensson, A. K. (2000).
Computers in school: Socially isolating or a tool to promote
collaboration? Journal of Educational Computing Research, 22(4), 437-453.

U.S. Department of Education & U.S. Department of Health and Human Services. (2016).
Early learning and educational technology policy brief.
https://tech.ed.gov/earlylearning

Vegas, E. & Fowler, B. (2020).
What do we know about the expansion of K-12 computer
science education? Brookings. Retrieved February 2, 2021.

Vizner, M. (2017).
Big Robots for Little Kids: Investigating the role of scale in early
childhood robotics kits. (Unpublished master’s thesis). Tufts University, Medford,
MA.

Webb, M., Davis, N., Bell, T., Katz, Y. J., Reynolds, N., Chambers, D. P. & Sysło, M. M.
(2017).
Computer science in K-12 school curricula of the 2lst century: Why, what
and when? Education and Information Technologies, 22(2), 445-468.

Wiggins, G. (1998).
Educative Assessment: Designing Assessments to Inform and Improve
Student Performance. San Francisco: Jossey-Bass.

Wing, J. (2011).
Research notebook: Computational thinking—What and why. The link
magazine, 6, 20-23.

Zviel-Girshin, R., Luria, A. & Shaham, C. (2020).
Robotics as a tool to enhance
technological thinking in early childhood. Journal of Science Education and
Technology, 29(2), 294-302.

About the Authors
Amanda Strawhacker (amanda.strawhacker@tufts.edu) is the
Associate Director of the Early Childhood Technology (ECT)
Graduate Certificate Program at Tufts University’s Eliot-Pearson
Department of Child Study and Human Development. Her work
involves teaching, developing curriculum, and professional
development around educational technology. Prior to her role at
ECT, Amanda was a Ph.D. student at the DevTech Research
Group. She has contributed to the research and development of
several technologies including the ScratchJr programming app,

the KIBO robotics kit, the Early Childhood Makerspace at Tufts, and most recently the
CRISPEE bioengineering kit, a collaborative research project between DevTech and the

Page 22

Strawhacker, A., Relkin, E., Bers, M.U. (2022) Educational Designer, 4(15)

Retrieved from: http://www.educationaldesigner.org/ed/volume4/issue15/article60/

mailto:amanda.strawhacker@tufts.edu
https://sites.tufts.edu/devtech/certificate/

© ISDDE 2022 - all rights reserved unless specified otherwise

Strawhacker, A., Relkin, E., Bers, M.U. (2022) Designing an Adaptive Assessment for Preschool Children’s Robotics Knowledge.
Educational Designer, 4(15). ISSN 1759-1325

Retrieved from:
http://www.educationaldesigner.org/ed/volume4/issue15/article60/

Human-Computer Interaction Lab at Wellesley College about engaging children in playful
learning about bioengineering and bioethics. Amanda is a triple-Jumbo who finished her
B.A. in Biological Anthropology at Tufts in 2011 and her Master’s and Ph.D. in Child Study
and Human Development at Eliot-Pearson in 2020. She is a two-time winner of the Eliot-
Pearson Research-Practice Integration Award, and was a speaker with
TEDxYouth@BeaconStreet on her research with bioengineering in early childhood. She is
passionate about engaging young children in playful, positive, and developmentally
appropriate STEAM experiences.

Emily Relkin (emily.relkin@tufts.edu) is a Ph.D. candidate at
the Eliot-Pearson Department of Child Study and Human
Development at Tufts University and is a member of the DevTech
Research Group. Emily received her B.A. from Muhlenberg
College in Psychology and her M.A. from Tufts University in Child
Study and Human Development. Her research focuses on
understanding and assessing the development of computational
thinking abilities in young children. She developed and validated
TechCheck, a novel unplugged computational thinking assessment

for 3-9-year-olds that has been administered to thousands of children around the world.

Marina Umaschi Bers (marina.bers@tufts.edu) is professor at
the Eliot-Pearson Department of Child Study and Human
Development with a secondary appointment in the Computer
Science Department at Tufts University. She heads the
interdisciplinary Developmental Technologies research group. Her
research involves the design and study of innovative learning
technologies to promote children’s positive development. She also
developed and serves as director of the on-line blended graduate
certificate program on Early Childhood Technology at Tufts

University. Prof. Umaschi Bers is passionate about using the power of technology to
promote positive development and learning for young children. Check out her 2014 TEDx
talk “Young programmers — think playgrounds, not playpens”. Bers’ philosophy and
theoretical approach as well as the curriculum and assessment methods can be found in
her books “Beyond Coding: How Children Learn Human Values through Programming”
(MIT Press, 2022); “Teaching Computational Thinking and Coding to Young Children”
(IGI, 2021); “Coding as Playground: Programming and Computational Thinking in the
Early Childhood Classroom” (Routledge, 2018; 2020); “The Official ScratchJr Book”
(2015; No Starch Press); “Designing Digital Experiences for Positive Youth Development:
From Playpen to Playground” (2012, Oxford University Press); and “Blocks to Robots:
Learning with Technology in the Early Childhood Classroom” (2008; Teacher’s College
Press).

Page 23

Strawhacker, A., Relkin, E., Bers, M.U. (2022) Educational Designer, 4(15)

Retrieved from: http://www.educationaldesigner.org/ed/volume4/issue15/article60/

http://www.educationaldesigner.org/ed/volume4/issue15/article60/
https://tedxbeaconstreet.com/videos/every-6-year-old-needs-to-learn-bioengineering/
mailto:emily.relkin@tufts.edu
mailto:marina.bers@tufts.edu
http://ase.tufts.edu/epcd/
https://sites.tufts.edu/devtech/
https://sites.tufts.edu/devtech/certificate/
https://www.youtube.com/watch?v=jOQ-9S3lOnM&list=PLXzFU_7W4n0t5suyfWPX6R-zUpd1MQ876
https://mitpress.mit.edu/books/beyond-coding
https://www.igi-global.com/book/teaching-computational-thinking-coding-young/262496
https://www.amazon.com/Coding-Playground-Programming-Computational-Childhood/dp/1138225622/ref=sr_1_1?ie=UTF8&qid=1511736164&sr=8-1&keywords=coding+as+a+playground
https://www.amazon.com/Official-ScratchJr-Book-Help-Learn/dp/1593276710/ref=sr_1_3?s=books&ie=UTF8&qid=1511736210&sr=1-3&keywords=marina+bers
https://www.amazon.com/Designing-Digital-Experiences-Positive-Development/dp/019975702X/ref=sr_1_4?s=books&ie=UTF8&qid=1511736210&sr=1-4&keywords=marina+bers
https://www.amazon.com/Blocks-Robots-Technology-Childhood-Classroom/dp/0807748471/ref=sr_1_5?s=books&ie=UTF8&qid=1511736210&sr=1-5&keywords=marina+bers

