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This opinion paper explores and questions why numerical (iterative) methods, so widely
used in business and scientific endeavours, are largely underrepresented in school
mathematics curricula. Mathematics topics such as solving quadratic equations by using
the quadratic formula or using algebraic procedures to solve problems in measurement,
geometry or probability are deeply entrenched in the teaching strategies employed by
teachers and in the resources developed to support those behaviours. Iterative
approaches to the same topics offer an alternative, and in many instances more efficient,
approach. They are often more suited to struggling students and can lead to greater
success and deeper understanding of the underlying mathematical concepts. Classroom
examples are offered, the potential advantages discussed, and finally some thoughts are
given on why in this digital STEM age numerical approaches have not penetrated school
curricula to the extent they could or should.

Am I so out of touch with prevailing realities, conventions, and purposes of maths
programs? Or are we all so trapped in some methods, procedures, and traditions long past
their use-by-date that they are nigh on impossible to be re-evaluated?

We build curriculum to provide students with all the tools they need for their
mathematical journeys. Some years ago, I studied a university course titled ‘Numerical
methods that (usually) work’ based on Acton (1970). It was about the power of empirical
approaches to solving problems as an alternative – or additional – tool to go alongside
formulaic approaches. I was entranced by the power of some of these approaches, so suited
to this digital age, so suited to a wide range of student abilities, and I became convinced
that within a few years they would feature prominently in school mathematics courses at
all levels. That this has not happened is, and remains, a mystery.

In this article, which I offer as a highly personal commentary, I outline some samples of
the approaches, and then discuss some various general advantageous features. Finally, I
ponder why numerical methods have failed to penetrate school curriculum in any
substantive way.



Professional Development Context
In my various roles supporting teachers to build or enhance their personal repertoires of
teaching and learning skills, I have become a lesson collector - but I collect for a reason.
The lessons I collect I argue are ‘interesting’. By this I mean professionally worthy of
serious discussion as they illustrate how various current interest areas within maths
education are being or might be interpreted at the classroom level. Their purpose therefore
is as practical vehicles to generate professional learning discussions at the school level
around various current issues and interest areas within school maths programs.

The lessons that I find, collect and codify have titles such as Multo, The Architect’s Puzzle,
Snakes and Ladders, Heads and Legs, Maths in Motion, Algebra Walk, Licorice Factory,
and Fraction Estimation. They all currently stored within the Australian Association of
Mathematics Teachers Maths300 project
(https://aamt.edu.au/teachers/resources/maths-300/)
. They are available to professional development leaders anywhere to plug them into their
networks to generate discussions about notions of problem solving and reasoning,
meaningful contexts, genuine understandings, effective use of technology, equity and
differentiation, pedagogical strategies, assessment techniques, explicit teaching, learning
theories, interconnectedness, and the ever present balancing act between skill
development and open-ended investigative approaches. In other words, all the big ideas
that can feed into teacher design of classroom lessons. By and large I feel moderately
satisfied that the professional discussions have been productive as teachers constantly seek
to expand the quality of their personal teaching repertoire and to develop rich and
balanced programs.

When I reflect on lessons that have had an impact and those that haven’t, there is one
particular lesson type that stands out. It disturbs me. It has not had the impact I think it
deserves, and as mentioned above, that mystifies me as to why. The university course I
studied and subsequently explored in classrooms used iterative empirical approaches very
different from traditional formal analytic approaches. I was impressed and convinced that
these methods could and should become commonplace and replace much of traditional
formula methods. Indeed, these approaches are very evident in mathematical modelling in
all sorts of business and scientific contexts such as climate change, economic theories,
weather forecasting, population projections and town planning. Yet school mathematics
structures have largely ignored this reality.

To illustrate this lesson type, I offer the two classroom lessons below. The major idea they
both highlight and promote is an empirical iterative approach to problem solving. I hope
the reader will indulge my argument by way of personal experiences.

https://aamt.edu.au/teachers/resources/maths-300/
https://aamt.edu.au/teachers/resources/maths-300/


Lesson 1. Area of a Circle
Some many years ago, I was appointed to a suburban high school. The mathematics classes
were so called ‘ability streamed’. In Grade 8 there were 7 groups: 8A, 8B …. through to 8G.
I was the last maths teacher appointed to the school that year – no prize for guessing
which group awaited me. 8G already had sadly acquired a “We are no good at Maths”
culture; commitment and confidence not being their forte. The classes followed a common
course and sat a common exam. At one stage of the course a classic piece of Grade 8
content appeared. And I knew the question below was to be on ‘Friday’s Test’. What was I
expected to teach? Well, we had presumably drilled solving algebraic equations for just this
event.

Problem
The area of a circle is 40 cm2. Find the radius.
Calculate your answer to 2 decimal places.
Solution
𝜋𝑅

2 = 40
𝑅
2 = 40 / π

𝑅 = ± √40 / π
𝑅 = √40 / π
𝑅 = 3.57cm

After line 3, I declared “ignore the minus sign, kids”, the subtlety of why we do this utterly
escaping my students. I knew (and so did they) there was mostly no hope of success – the
algebra was beyond them, the symbolism was beyond them, they had little understanding
or appreciation of the mathematical significance, power, history and beauty of π, the
equation-solving steps beyond them.

The alternative pathway
Someone had shown me a different pathway – an empirical guess and check approach.
What did students know? They knew the area of a square. So, build on that (constructivist
learning theory). We drew a square, and we called this the corner square (CS) (see Figure
1). We could see the side lengths of the corner square were all R. How many corner squares
would it take to cover the circle? They could readily see it was less than four. “Someone
counted it very carefully and found it was just over 3. Three and a bit – very close to 3.14”.
We now declared that to find the area of a circle we multiply the area of the corner square
by 3.14. All my 8G students could follow this – it made visible sense to them. None of them
could follow or make sense (at this stage of their learning journey) of the abstract version.



Figure 1. Showing the area of a circle is approximately 3.14 corner square
areas
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The conversation to support the new solution to the problem on Friday’s test went like this.

Make a guess. Maybe the radius is 2?

2×2 – What’s that? That’s the area of the corner square!

Times by 3.14 - Why do that? Cos that’s how many corner squares there are!

Answer: 12.56 TOO SMALL because we are looking for an area of 40.
Try a radius of 3?

3×3 – What’s that? That’s the area of the corner square!

Times by 3.14 - Why do that? etc. etc…



The language is simple, repetitive, and importantly within their understanding. We put the
results into a table. As they worked, I noticed a strong connection with visual imagery that
supported the process.

Radius
Area

(aiming for
40)

Comments

2 12.56 too small

3 28.26 too small

4 50.24 too big – so the radius is between 3 and 4

3.5 38.46 too small – but getting close

3.6 40. 69 too big so it’s between 3.5 and 3.6 which leads to…

3.56 39.80 too small – just

3.57 40.02 too big – only just and closest so far – to two decimal
places!

Were my students ready to accept and use this approach? Not by a long way – they had
become so conditioned to failure that positive entreaties from me had little effect initially. I
think I never worked so hard as a teacher to encourage and support them. “It’s on Friday’s
Test – the other Grade 8’s don’t know this method – I promise you we can all get this
question on the test correct – we might not get other questions right but let’s PLEASE give
this one a go.”

It did not happen easily but ‘inch-by-inch’ (sounds better than ‘cm-by-cm’) they started to
get practice questions right. More importantly they could see the logic of the process. Then
it seemed like the ‘dam broke’: “Hey – we can do these - they are easy!!”

To finish my personal experience with 8G, for Friday’s test I appealed to my class to seek
out and do this question first. Which they did and all smiled when the question appeared.
The mathematics department collected statistics on how students performed on various
test items. For this task 8A scored something like 95% correct as expected, 8B got 88% and
progressively less success rates down through the grades – but 8G? 100% correct. I was
called into the co-ordinator’s office, thinking there would be excitement and welcoming of
this beneficial approach which could advantage all students, not just my 8G. Not a word of
support; the atmosphere was of consternation and more than a whiff of possible ‘cheating’.
I could not escape the feeling as I left the room that my students were not meant to get it
correct! That there is a proper order and purpose to a maths curriculum, and I was
uncomfortably disturbing its structure.

This personal experience happened many years ago. I have since often used and promoted
the ideas and potential benefits, but it seems very little systemic progress has been made in
adopting such empirical approaches into general use. Area of a circle is just one example;
solving quadratic equations is another.



Lesson 2. Solving Quadratic Equations
In Australian schools, and I suspect in most other countries, significant time in Grades 9
and 10 is devoted to the study of quadratic equations and their solutions. Students are
drilled to convert any quadratic equation such as 𝑥2 = 10 − 4𝑥 into the standard form of
𝑎𝑥

2 + 𝑏𝑥 + 𝑐 = 0, in this case, 𝑥2 + 4𝑥 − 10 = 0. Why? Because in this form the three
coefficients 𝑎, 𝑏 and 𝑐 can be easily read and plugged into that famous quadratic formula to
get the solutions.

In my Grade 9 classes, confidence and mastery of this formula and its derivation was never
strong. Indeed, it was quite the opposite: it induced negative reactions. For many students
it was the ‘beginning of the end of the road’ of their mathematical journeys. It was too
abstract but most importantly they clearly did not understand the logic of the rule. It was a
‘black box’ mystery.

I challenged my students (even the top classes) before using the formula to approximate an
expected answer to 𝑥2 + 4𝑥 − 10 = 0. Not a single student could offer anything – there is
nothing in the appearance of the standard form to allow them any intuitive processing. So,
I introduced a new standard form and an alternative solution method by rearranging
𝑥
2 + 4𝑥 − 10 = 0 into 𝑥2 + 4𝑥 = 10 and then into 𝑥(𝑥 + 4) = 10. This format became a new

standard form. “We are looking for a number, multiplied by another bigger by 4, to get an
answer of 10.”

All my Grade 9 students could follow this. They could ‘read’ in a way that made sense to
them. Putting numerical guesses into a table quickly gives the positive solution, and
surprisingly, the negative solution comes as a bonus. Students with somewhat better
algebra can investigate if it always happens and why.

𝑥 𝑥 + 4 product comment

1 5 5 too small

2 6 12 too big – the solution must be between 1 and 2

. . . . . . . . . . . .

1.7 5.7 9.69 too small but close

1.75 5.75 10.06 too big but closest so far

1.76 5.76 10.13 just checking which is closest

1.74 5.74 9.9876 just checking which is closest – this one!

-5.74 -1.74 9.9876 interestingly, in finding the positive solution of 1.74 the table
also provides the other solution which is -5.74.

This iterative method works for all types of quadratics. For example, 2𝑥
2 + 5𝑥 − 11 = 0

becomes 𝑥(𝑥 + 2.5) = 5.5 and solves just as easily. Even if the quadratic factorizes it soon
yields its integer solutions. For example, 𝑥2 − 7𝑥 + 10 = (𝑥 − 5)(𝑥 − 2) = 0, then
𝑥(𝑥 − 7) = −10 and 𝑥 = 2 or 5.



Observed general features of this approach

My Grade 9 students could follow every step. If they made an estimate error, they could
recover, they could get the answer to any level of desired accuracy quickly and efficiently.
They knew what they were working towards and were significantly more successful and
positive about their learning than when using the formula.

As my students progressed, a few interesting and important learning features became
prominent. Although these are informal observations from myself and other trial teachers,
each of these seem worthy of serious discussion and analysis with teachers as they explore
whether these numerical methods have long term potential at both a personal and
systemic level.

i. Mathematics. This iteration is an utterly legitimate mathematical process. Indeed,
in this electronic digital age many, if not a majority, of real industrial economic and
scientific problems are being solved using iterative techniques.

ii. Understanding. There is a strong focus on the concept of the iterative process
through what is essentially a first principles approach. Nearly every student could
articulate to me what they were doing and why – at any stage of the process.

iii. Access, Differentiation, Mixed Ability. All students could make a guess and get
started. The formula approach inhibits access unless the algebraic facility has been
well established.

iv. Language. The presentation and discussion highlight the connection between
everyday language and the language of mathematics.

v. Does iteration take too long? My students were solving a problem in about 3
minutes. That’s about the same time the traditional approach takes, so it is not less
efficient in terms of time.

vi. Connections. Because it is closer to a first principles approach than just using the
formula, students were actively interconnecting ideas. For example, when finding the
area of a circle, students connect ideas of area, algebra, and decimals.

vii. Technology. The effective and extensive use of calculators in this current era of
STEM is to be encouraged.

viii. Estimation. As students began to achieve success, they became much better at
making a ‘next guess’ estimate.

ix. Mistakes. You can make a mistake and recover. For example, making an estimate
that is ‘worse’ than the previous one is soon noticed, and a better guess created.

x. Discussion. The process seemed to encourage beneficial small group work and
associated discussion in a manner that does not occur in the formula approach.

xi. Level of Accuracy. Several of my students wanted to get the answers exact and
worked out answers to 4 and 5 places (and then were disappointed when the
calculator of the day could not ‘go further’).

xii. Confidence. Students became faster and more confident as they started to ‘churn
out’ correct answers.



Obstacles and impediments to substantive systemic
adoption
Over years of successfully exploring and enjoying these approaches, I have had much cause
to ponder why they have not become more widespread, particularly at systemic policy
levels.

Are numerical methods currently recognised and promoted within school policy and scope
and sequence documents. It seems not. The current (2022) page of Wikipedia on
quadratics
(https://en.wikipedia.org/wiki/Quadratic_equation)
has comprehensive coverage of solving quadratics but it reveals not a single word about
numerical methods. Similarly, other web searches such as ‘What is the fastest way to solve
quadratics?’ or ‘What is the best way to solve quadratics?’ all mention factoring,
completing the square, using the classic formula, and graphing but not iterative
techniques. Graphing calculators use iterative software, but this is often automated and
hence the logic of the approach is often masked and not made explicit to students.

A second obstacle to adoption may be that there is some confusion of purpose for these
tasks. For example, is the Friday test’s area task (finding the radius for circle area 40 cm2):

1. primarily about area and providing students with an algebraic tool to assist with the
calculations?

2. primarily about building algebraic manipulation skills so the topic of area merely a
convenient context in the service of that algebra?

3. primarily to showcase the power and beauty of the number π?

It is probably parts of all three, but I contend that for struggling Grade 8 students these
three are all largely unattainable. If the purpose is about area-related calculation then it
seems to me a ‘no-brainer’ – many more students will benefit and be empowered by the
iterative approach, gaining understanding and success. If the purpose is about the
undoubted extraordinary beauty and usefulness of π, then Grade 8 is arguably not the
place for this to happen for a majority of students.

Third, whilst ‘business is booming’, curriculum is not. The Australian Curriculum:
Mathematics (v.9) (ACARA, 2022) is the formal policy provided to Australian schools to
guide courses. A search reveals very little mention of iterative problem solving techniques
anywhere in the Grade 8 to 10 guidelines and the two current textbooks I consulted did not
present it in any way. While largely absent from school curriculum, it is not so in business
and scientific endeavours. Any search will yield multiple references and scenarios to the
widespread use of numerical algorithms. Sundaram (1998), for example, commented:

Optimization methods using differential calculus can be applied to solve certain problems
but as the problem becomes too cumbersome then classical methods get replaced by
iterative techniques. This process of finding solution iteratively involves extensive
computations and there are several algorithms on iteration. (p. 1)

https://en.wikipedia.org/wiki/Quadratic_equation
https://en.wikipedia.org/wiki/Quadratic_equation
https://en.wikipedia.org/wiki/Quadratic_equation


A somewhat depressing �nale

A legacy of history and preserving the status quo
Why does 𝐴 = 𝜋𝑅

2  and associated problem solving feature in the Grade 8 curriculum for
13 year old students? Who put it there? Who decided that this is the appropriate level? Any
survey reveals it to be enshrined in almost every Grade 8 textbook. One historical view is
that before the 1940’s and 1950’s, Mathematics was in the liberal arts faculty at
universities. It was not as connected with science fields as it is now, witnessed by the
current growth of STEM subjects. Most students in schools studied arithmetic and were
not engaged in higher mathematics. The small number that took higher mathematics were
challenged to get into university by climbing a ‘ladder’ designed to ‘weed out’ students to
find those worthy to enter the portals of a university. It was competitive, but participants
willingly and knowingly took on the challenges. It was not a ‘mathematics for all’ course in
any utilitarian sense. It seems at that time that tasks such as area of a circle were thought
appropriate at the Grade 8 level.

Around the 1950’s with school retentions growing rapidly and a realisation that
mathematics beyond arithmetic was worthy of study for all students, new courses were
needed. It seems in this transition that much content designed for a quite different cohort
survived. It is arguable that the algebra skills needed for area or quadratics problems are
too hard and too abstract at their current age levels for a significant number of students.
Their negative experiences carry into adulthood and seem partly responsible for the
mathematics anxiety and somewhat poor attitudes to school mathematics so evident in the
wider community.

Just recently, while preparing to finish this article a neighbourhood student sought my
assistance in the following word problem which had been set for homework.

A rectangular floor vent is 12cm long and 6cm wide. It is to be enlarged by increasing the
length and the width by 𝑥 centimetres.

i. What is the new length of the floor vent (in terms of 𝑥)?
ii. Show that the area, 𝐴, of the new vent is given by 𝐴 = 𝑥

2 + 18𝑥 + 72.
iii. The area of the new vent must be 50% more than the original area. Find the

dimensions (to the nearest centimetre) of the new vent.

I found the task as presented to be rather depressing in two fronts.

First consider the context. Word problems are often used to provide contexts or scenarios
to illustrate how mathematics is applied to ‘real world’ problems. But the scenarios are
often spurious and the main purpose being to practise use of formulaic procedures. Here,
no effort is made to establish a meaningful context. Presumably the question intends a
vent for heating. For example, asking students to check their household to see if there are
vents and of what size might establish the context as meaningful. The most common vent
in house heating here is 30cm by 10cm which presumably is sufficient in size to provide
appropriate volumes of air. A size of 12cm by 6cm is not at all common and probably
insufficient for heating. Why does the author not account for this? The numbers are
misleading and clearly contrived solely for the quadratic algebraic purpose, not for any
meaningful problem to be solved. Pitman and Pateman (1985) in their report to the



Summary
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Australian National Mathematics Curriculum and Teaching Program produced an
overview of ‘What’s wrong with school mathematics?’ by surveying teachers, students,
parents, universities, and the wider community. At the top of their list was ‘boring’ closely
followed by ‘irrelevant’. The above type of word problem does little to alleviate these
criticisms.

Second, consider the solution method. The expected explicit solution method is to generate
a quadratic equation, to recognise the three coefficients, and then apply the quadratic
formula. If the purpose was to solve the problem then this quadratic pathway is a very poor
choice when the problem is solved numerically in a fraction of the time. If the purpose is to
solve the problem (a big ‘if’), then it yields quickly, efficiently, and logically using an
empirical approach.

Size
(cm)

Area
(cm2) Comment

12 × 6 72 A 50% increase requires an area of 108

13 × 7 91 too small

14 × 8 112 slightly too large but this is the best to the nearest cm

13.9 × 7.9 109.81 greater precision if needed can then easily be found as
required

13.8 × 7.8 107.64 just a little too small

Students need to be building a toolbox of solution methods and strategies and to learn to
choose the appropriate tool for the task. In many tasks, such as those discussed here, the
formulaic methods seem to be wholly inappropriate and the empirical method vastly
superior. I finish with a hope embedded in a question. What needs to happen in
curriculum planning to recognise the benefits of numerical approaches and to enshrine
these in an appropriate manner into general systemic curriculum policy?
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